

# FIAT 600e

RED ELECTRIC FWD AUTOMATIC



# **Sustainability Rating**





Clean Air

9.6/10



Energy Efficiency

9.5/10



Greenhouse Gases

10.0 /10

# **Driving Experience**



Consumption & Range

GOOD



Cold Winter Performance

ADEQUATE



Charging Capability

ADEQUATE

#### **Our verdict**

The electric FIAT 600e achieves remarkable results in the sustainability assessment. The small EV impresses with high powertrain efficiency and its lifecycle impact benefits from its low mass and moderate battery size.

- The FIAT 600e has no tailpipe emissions and low tyre, brake, and production- and fuel supply-related emissions due to its compact size and efficiency.
- It features a low-consuming powertrain and efficient heating, maintaining impressive energy performance even in cold and highway conditions.
- ) It achieves top marks for greenhouse gas emissions, showing low lifecycle climate impact thanks to its small size, smart design and high overall efficiency.

While it can be expected that a car with a relatively low mass and moderate battery capacity will score in the non-usage lifecycle phases, the FIAT 600e surprised with a very low electricity consumption in all tests. The measurement figures are notably better than those of many other vehicles of the same class.

Disclaimer







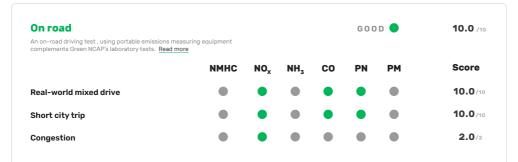






9.6/10

#### Comments


With no tailpipe emissions and scoring highly for tyre and brake abrasion, the FIAT is awarded excellent results in this part of the investigations. Due to the compact dimensions, lightweight and low consumption, the emissions associated to production processes and supply of energy are also low.

#### **Exhaust emissions**

Exhaust pollutant emissions are produced from combustion engines. Although current emission legislation is very strict, this type of emission directly affects air quality, and not all vehicles perform equally well. Read more

GOOD **10.0**/10

| In laboratory                                                                                                            |      |                 |                 |    | G 0 0 | D 🛑 | 10.0 /1 |
|--------------------------------------------------------------------------------------------------------------------------|------|-----------------|-----------------|----|-------|-----|---------|
| Green NCAP performs a wide range of tests or<br>controlled conditions and guarantee that all or<br>comparable. Read more |      |                 |                 |    |       |     |         |
|                                                                                                                          | NMHC | NO <sub>x</sub> | NH <sub>3</sub> | СО | PN    | PM  | Score   |
| Legal test (WLTP)                                                                                                        | •    | •               |                 | •  |       | •   | 8.0/8   |
| Warm weather                                                                                                             | •    | •               | •               |    |       | •   | 10.0/1  |
| Highway                                                                                                                  | •    | •               | •               |    |       | •   | 10.0/1  |
| Winter cold start                                                                                                        | •    | •               | •               |    |       | •   | 10.0/1  |
| Winter warm start                                                                                                        | •    |                 |                 |    |       |     | 10.0/1  |











9.6 /10

#### Non-exhaust emissions

Driving a vehicle also produces emissions different from those of the exhaust pipe. Green NCAP evaluates vehicle properties that contribute to tyre and brake abrasion.

ADEQUATE -

ADEQUATE -

2025

9.0/10

#### Tyre wear

Tyre abrasion releases small particles during driving, and some vehicle properties have major impact on it. Heavier vehicles, wheel alignment causing increased slip angle, and aggressive acceleration responses all increase tyre wear and particle emissions. Read more

5.2/6

Influence of mass

2.2/3

2.0/2

Score

Wheel alignment

Result

1.0/1

Accelerator response

#### **Brake wear**

Brake dust, produced by friction brakes, can be mitigated through filters, enclosed brake systems (like drums), or by reducing friction brake use with regenerative braking in electrified vehicles. Containment keeps dust inside the system, while recuperation lowers brake wear. However, heavier vehicles still generate more brake abrasion due to their greater stopping demands. Read more

Result

GOOD

5.6/6

Brake dust mitigaton

Score 0.0/4

**Brake dust containment** 

0.0/6

Recuperative braking - warm test

5.6/6

























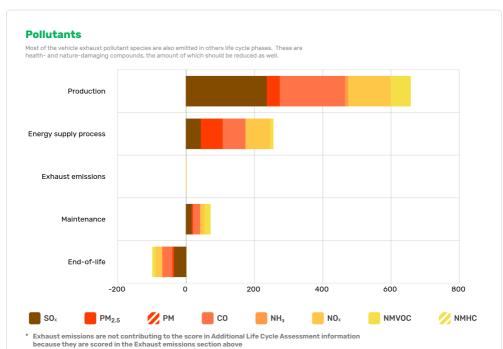








9.6/10


## **Additional Life Cycle Assessment information**

Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, pollutants are estimated in the various stages of a vehicle's life other than use. The chart also displays the measured emissions related to usage, which are taken as an average from the tests and are scored separately in the 'Exhaust emissions' part above. The end-of-life approach uses results in negative values because the benefit of materials recovery and recycling exceeds the effort of obtaining and processing virgin raw materials.

GOOD 🔵

2025

9.1/10































## **Energy Efficiency**

9.5 /10

#### Comments

The 600e is equipped with a low-consuming powertrain and an efficient heating system, so that its consumption figures impress even in the challenging highway cycle and in the -7 C cold weather sequence.

## **Energy demand**



















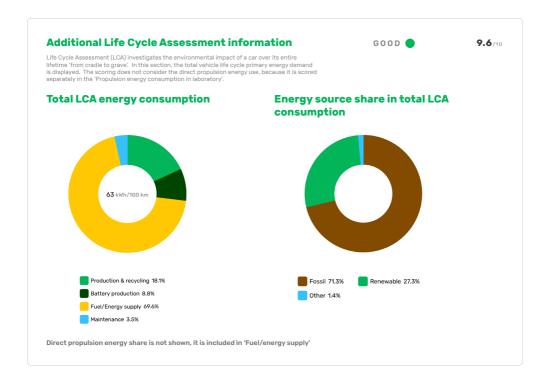

















## **Energy Efficiency**

9.5 /10



#### **Rolling resistance**

Rated here is the vehicle's resistance to movement at low speeds. Different factors have an impact on it, but the most significant one is mass.

GOOD

9.3/10





































#### 🔼 Greenhouse Gases

10.0 /10

#### Comments

Greenhouse gases is the top category of this small and efficient urban SUV. It easily gathered full points, demonstrating very low lifecycle impact on the climate, thanks to adequate sizing and Stellantis engineers' efforts for increasing efficiency, which pay off.


#### **Exhaust GHG emissions**

Combustion of conventional fuels releases greenhouse gases at the vehicle's tailpipe. The most significant of these gases are the emissions of  $CO_2$ . Green NCAP's assessment considers methane (CH<sub>4</sub>) and laughing gas (N<sub>2</sub>O) as well. Together, these are counted with their global warming potential to a sum known as CO<sub>2</sub> equivalent.

GOOD

2025

10.0/10



























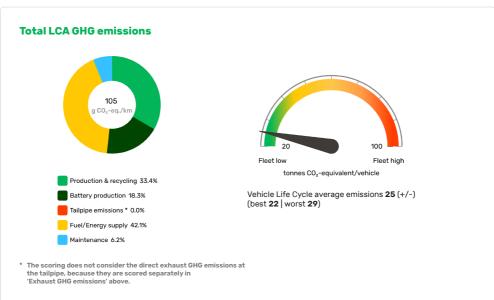








### Greenhouse Gases


10.0 /10

## **Additional Life Cycle Assessment information**

Life Cycle Assessment (LCA) investigates the environmental impact of a car over its entire lifetime, 'from cradle to grave'. In this section, the total vehicle life cycle greenhouse gas emissions are displayed.

ADEQUATE \_

7.3/10

































# **Driving Experience**



### Consumption & Range

GOOD



#### **Cold Winter Performance**

ADEQUATE



## Charging Capability

ADEQUATE

#### **Green NCAP Comment**

The FIAT 600e shows that high sustainability scoring does not necessarily come at the cost of usability. The car generally shows adequate to good performance in the tested categories and represents its class very well.

- ) The small electric SUV shines with low consumption values in different tests, resulting in acceptable driving ranges. Drivers can trust the consumption figures shown on the display, keeping in mind that they only reflect the energy amount withdrawn from the battery. The amount needed to charge it is naturally higher.
- ) The heating performance of the car in -7 C cold start conditions is impressively fast. In the rear footwell it would take a bit longer to reach comfortable temperatures. The fact that the temperature at the non-occupied rear seat did not increase as for the occupied one suggests that the vehicle might be able to actively provide comfort only to the passengers present in the car, smartly saving potentially wasted energy.
- ) Both the standard home AC charging and the fast DC charging performance are adequate. The car does not provide any kind of bidirectional charging.





## **Consumption & Range**

GOOD

GOOD

### **Estimated actual consumption**

What consumption can be expected in real world conditions?

In-laboratory measured consumption values are only partially representative of real-world use. Green NCAP's estimates aim at providing more realistic figures, which are based on measured results, modified by correction factors.

| Conditions   | Urban | Rural | Highway | Mixed        |
|--------------|-------|-------|---------|--------------|
| Warm weather | 14.7  | 15.7  | 19.5    | 16.4 kWh/100 |
| Cold Winter  | 28.5  | 20.1  | 25.3    | 24.8 kWh/100 |

## **Driving range**

ADEQUATE -

What driving range can be expected in real world conditions?

Of special importance to consumers is the real-world driving range of electric vehicles. Green NCAP estimates this based on measured data, modified by correction factors.

| Conditions   | Urban | Rural | Highway | Mixed        |
|--------------|-------|-------|---------|--------------|
| Warm weather | 380   | 355   | 287     | <b>340</b> k |
| Cold Winter  | 195   | 277   | 220     | <b>225</b> k |

#### **Accuracy of display**

GOOD



Is the consumption figure on the display correct?



















not applicable



ADEQUATE -

## **Driving range benefit of pre-warming**

ADEQUATE -

How much further can you drive in winter, if the car is pre-warmed?

A cold vehicle has increased energy consumption at the start of its trip, mostly due to the cabin heating demand. Pre-warming the car while it is plugged, when possible, can significantly benefit its driving range in cold weather conditions. Green NCAP's winter tests are performed at -7°C.

| Driving Range Benefit | Result  |
|-----------------------|---------|
| <b>+100</b> km        | •       |
| <b>+44</b> km         | •       |
|                       | +100 km |

## Cabin heating

GOOD

Does the vehicle get warm quickly in winter?

This indicates the time needed to reach 16°C in seconds at different positions in the cabin.



right footwell reached 16 C in 510 seconds.













not applicable



# **Cold Winter Performance**



## **Additional heating functions**

What functions can be used to improve heating comfort?

Unlike a combustion car, which usually uses the engine's waste heat to provide warmth to the cabin, in electric vehicles, the energy needed comes from the battery. Therefore, there is a trade-off between thermal comfort and energy consumption. Some additional heating functions can deliver good thermal comfort performance at lower energy use compared to heating up the entire cabin. If they can be scheduled or remotely activated before a trip, while the vehicle is still plugged, both comfort and driving range can be notably improved.

|                                      | Y/N | Fitment  |  |
|--------------------------------------|-----|----------|--|
| Heat pump                            |     | Standard |  |
| Seating heating front                |     | Standard |  |
| Seating heating rear                 | ×   |          |  |
| Steering wheel heating               | ×   |          |  |
| Sheduled pre-heating of seats        | ×   |          |  |
| Scheduled steering wheel pre-heating | ×   |          |  |
| Scheduled cabin air pre-heating      |     | Standard |  |
| Smart cabin heating management       |     | Unknown  |  |

#### Cabin thermal insulation

ADEQUATE -



How well does the cabin maintain its temperature? Assessed here is the average cabin temperature drop after 30 minutes, starting from 18°C when the outside temperature is -7°C and the vehicle





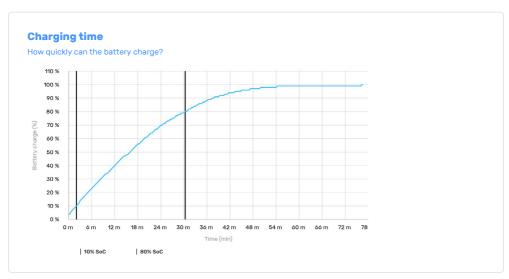


## **Charging Capabilities**



## **Battery pre-conditioning**

Does the vehicle have the ability to optimize the battery temperature for fast charging?


Fast charging is quicker when the battery temperature is in a certain range, and many vehicles possess the function to actively prepare for a coming fast charging event. Most use the charger destination in the navigational system to control the process, and some would offer a manual activation function.

|                          | Manual | Automatic |
|--------------------------|--------|-----------|
| Battery pre-conditioning | ×      |           |

#### **Fast charging**

ADEQUATE -

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.















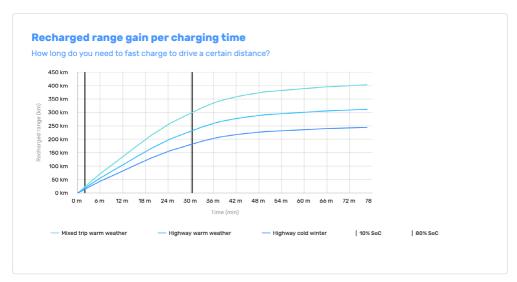








## **Charging Capabilities**


ADEQUATE -

96%



ADEQUATE -

Green NCAP's fast charging test verifies the vehicle's ability to recharge fast, which is crucial at long trips or tight schedules. Although constantly improving, not all vehicles offer the same capabilities.





not applicable





adequate



## **Charging Capabilities**

ADEQUATE -

ADEQUATE -

POOR

## Home charging efficiency

Is charging at home efficiently utilizing the energy withdrawn from the grid?

The assessed efficiency value is the grid-to-battery-output efficiency, which describes what share of the energy taken from the electricity grid is available for the vehicle to use for propulsion and other auxiliary functions. The value encompasses not only the charger efficiency but considers several other losses as well

Home charging efficiency

Maximum home charging power

87%

2025

11.0 kW Standard

#### **Bidirectional charging**

How capable is the vehicle of supplying energy from its battery to other devices or systems?

Bi-directional charging is available in some vehicles and is gaining increasing popularity. It comes with different power and functionality levels. However, battery usage for purposes additional to regular vehicle driving and charging might be disadvantageous for its durability and manufacturers might introduce limitations to protect it.

#### **Power output**

Not available

#### Compatibility



#### Vehicle-to-Load (V2L)

The inlet or the interior socket can provide AC power through an electrical household through a charger. domestic socket.

#### Vehicle-to-Household (V2H)

The vehicle can provide power to a



#### Vehicle-to-Grid (V2G)

The vehicle can return power to the arid.

#### Fitment: Standard

#### **Grid integration**



No integration (just a socket for a stand-alone load). No scheduling option. Very basic visualisation.



Energy management system through the vehicle app (timers availability and power monitoring). Dedicated interface in the car, with mobile app monitoring.



#### Advanced

Advanced settings available such as tariff and consumption control, linked to distributor energy prices. Advanced real time energy flow visualization. Al powered suggestions for optimal usage.

#### Fitment: Standard



good



adequate





not applicable









## **Specifications**

Vehicle class **Small SUV** 

System power/torque

115 kW/260 Nm

**Engine size** 

n.a.

**Declared consumption** 

n.a.

2025

**Declared driving range** 

Overall 409 km City 604 km

Declared CO<sub>2</sub>

n.a.

**Declared battery capacity** 

Usable (net) 51.0 kWh Installed (gross) 54.0 kWh

Mass

1,523 kg

**Heating concept** 

Waste heat & PTC & heat

pump

**Tyres** 

215/65 R16

**Emissions class** 

AX

**Tested car** 

**ZFANFBA50PJ00xxxx** 

**Publication date** 

09 2025









